华南脑成像实验中心

王本驰

2020-09-30 08:26:00 来源:华南师范大学脑科学与康复医学研究院 点击: 收藏本文

王本驰.png


王本驰,博士,长聘副研究员。2020年回国后,入职华南师范大学脑科学与康复医学研究院,主要从事注意,记忆,语言和统计学习等方面的相关研究。目前主要采用心理物理法,眼动追踪,电生理(EEG and intracranial EEG)解码,以及功能磁共振(functional MRI)成像等技术来开展研究。

近几年,作为第一作者和通讯作者在美国心理学会官方期刊Journal of Experimental Psychology系列,Journal of Cognitive NeurosciencePsychonomic Bulletin & ReviewNeuroimageNature Human Behaviour等认知和神经科学的核心期刊发表论文24篇,其中2ESI高被引论文(截止20243月,最高单篇被引300次)。文章引用率1300余次,H-index15

实验室欢迎有心理学,数学,和计算机等专业方向背景的同学加入本实验室。也欢迎本科生和访问研究生参与实验室的建设,管理,与科研工作。实验室的每名成员都有一颗踏实求真的心,团队氛围融洽,期待同样的你加盟。主要研究课题聚焦于:

1)长时记忆与工作记忆

2)注意选择与统计学习

3)语言预测与情景记忆

4)计算视觉与记忆重构

同时,欢迎有共同兴趣的优秀青年博士以博士后或者青年英才方式加盟,本课题组将提供优越的经费条件和强有力的国际合作支持。

更多信息参见课题组网站:http://wangbenchi.github.io,或邮件咨询:wangbenchi@163.com

 

科研经历

2019.11-nowSouth China Normal UniversityAssociate professor (Tenured)

2015.09-2019.09Vrije Universiteit AmsterdamCognitive PsychologyPhD

学术兼职

1, Visual Cognition编委 (2020-now)

2, VU Amsterdam的兼职博士生导师

3, Ad-hoc Reviewer for:

Trends in Cognitive Sciences, Communications Psychology, Neuroimage. iScience, Cerebral Cortex, Current Direction in Psychology, Journal of Experimental Psychology系列, Cognition, Journal of Cognitive Neuroscience, Psychonomic Bulletin & Review等几十个著名期刊。

4, 广东省和国家自然科学基金评审专家;国家留学基金评审专家.

国家及省部级课题

1、广东省自然科学基金面上项目(2023A1515012789):长时记忆与工作记忆的交互: 长时记忆的介入短暂突破工作记忆容量限制的神经机制,2023—2025。主持 (10 ).

2、科技创新2030重大项目 (2022ZD0204802),知觉学习的认知与神经环路机制,2022—2027,主持人:方方。项目骨干 (80 ).

3、国家自然科学基金青年项目 (32000738):注意选择中的统计学习,2021—2023。主持 (30 ).

4、广东省联合基金青年项目 (2019A1515110581):视觉工作记忆的动态存储,2020—2022。主持 (10 ).

5、华南师范大学青年拔尖人才启动经费,2019—2027。主持 (50 ).

 

学生获奖情况

林荣棋,2021,国家奖学金;2022,优秀硕士毕业论文

王丽双,2021,国家奖学金;2022,优秀毕业生

张媛媛,2022,华南师大研究生十佳学术论文

 

已毕业课题组成员

Baiwei Liu, Vrije Universiteit Amsterdam, 2020-, PhD candidate

Chenxiao Zhao, Leiden University, 2021-, PhD candidate

Rongqi Lin, Vrije Universiteit Amsterdam, 2022-, PhD candidate

Yinfei Zhou, Zhejiang Normal University, 2023-, PhD candidate

Yuanyuan Zhang, Vrije Universiteit Amsterdam, 2024-, PhD candidate

Yang Cao, South China Normal University, 2024-, PhD candidate

 

Research Interest and recent publications (近五年, *通讯作者,#课题组学生.

I) Visual selection, statistical learning, and distractor suppression

In our daily life, we always encounter a complex visual world with an enormous amount of perceptual information. It is well known that we cannot process all the information at one time, but instead we need to direct limited resources towards a subset of relevant items that is closely linked to our current behaviour (i.e., visual selection).

Image that you are working in your office writing a science paper. The goal is to finish this paper and to stay focused on the work at hand. This is a form of goal-driven selection involving top-down control. Imagine that someone knocks on your door; this will distract you and your attention is automatically oriented towards the door. This would be a form of stimulus-driven selection involving bottom-up control. If your colleague keeps knocking on the door just for fun, you probably will be able to supress the distracting and continue to work again at your paper. This is a form of history-driven selection involving lingering biases due to previous selection episodes.

From the example described above, we can conceptualize visual selection as being controlled in three ways (Awh, Belopolsky, & Theeuwes, 2012; Theeuwes, 2018, 2019): top-down control, bottom-up control, and selection-history. We are mainly interested in how those factors interact with each other, to shape the selection priority map, driving current selection. See below for our recent publications in the related field.

 

16. Lin, R.#, Meng, X., Chen, F., Li, X., Jensen, O., Theeuwes, J., & Wang, B.* (2024). Neural evidence forpatial suppression due to statistical learning tracks the estimated spatial probability. Nature Human Behaviour. (2023IF = 29.9, 神经科学总排名2/272)

15. Zhang, Y.#, Yang, Y.#, Wang, B.*, & Theeuwes, J. (2022). Spatial enhancement due to statistical learning tracks the estimated spatial probability. Attention Perception and Psychophysics.

14. Wang, L.#, Wang, B.*, & Theeuwes, J. (2021). Across-trial spatial suppression in visual search. Attention Perception and Psychophysics.

13. Lin, R.#, Li, X., Wang, B.*, & Theeuwes, J. (2021). Spatial suppression due to statistical learning tracks the estimated spatial probability. Attention Perception and Psychophysics.

12. Wang, B.*, & Theeuwes, J. (2020). Salience determines attentional orienting in visual selection. Journal of Experimental psychology: Human Perception and Performance.

11. Wang, B.* & Theeuwes, J. (2020). Implicit attentional biases in a changing environment. Acta Psychologica.

10. Kong, S.#, Li, X., Wang, B.*, & Theeuwes, J. (2020). Proactively location-based suppression elicited by statistical learning. Plos one.

9. Wang, B.*, van Driel, J., Ort, E., & Theeuwes, J. (2019). Anticipatory distractor suppression elicited by statistical regularities in visual search. Journal of Cognitive Neuroscience.

8. Wang, B.*, Samara, I, & Theeuwes, J. (2019). Statistical regularities bias overt attention. Attention Perception and Psychophysics.

7. Failing, M, Wang, B.*, & Theeuwes, J. (2019). Spatial suppression due to statistical regularities is driven by distractor suppression not by target activation. Attention Perception and Psychophysics.

6. Failing, M., Feldmann-Wüstefeld, T., Wang, B., Olivers, C., & Theeuwes, J. (2019). Statistical regularities induce spatial as well as feature-specific suppression. Journal of Experimental Psychology: Human Perception and Performance.

5. Wang, B.* & Theeuwes, J. (2018c). Statistical regularities modulate attentional capture independent of search strategy. Attention Perception and Psychophysics.

4. Wang, B.* & Theeuwes, J. (2018b). How to inhibit a distractor location? Statistical learning versus active, top-down suppression. Attention Perception and Psychophysics. (Highly cited paper [Top 1%])

3. Wang, B.* & Theeuwes, J. (2018a). Statistical regularities modulate attentional capture. Journal of Experimental Psychology: Human Perception and Performance. (Highly cited paper [Top 1%])

2. Wang, B., Yan, C., Klein, R., & Wang, Z.* (2018). Inhibition of return revisited: Localized inhibition on top of a pervasive bias. Psychonomic Bulletin and Review.

1. Wang, B., Hilchey, M. D., Cao, X., & Wang, Z.* (2014). The spatial distribution of inhibition of return revisited: No difference found between manual and saccadic responses. Neuroscience Letters.

 

II) Memory and attention

Working memory (WM) is commonly treated as an online memory system which not only provides temporary storage, but also manipulates the information necessary for ongoing complex cognitive tasks, such as learning and reasoning. The standard view of WM has been that the storage capacity of WM is limited, and is assumed to hold up to ~4 items at a time.

Given by that this memory system with limited capacity does play an important role in many cognitive tasks, it is necessary to understand how this system works, how to improve its capacity, how to manipulate the memory representation of items stored in memory, and how it is related to our Long-term memory system. See below for our recent publications in the related field.

 

9. Liu, B., Li, X., Theeuwes, J., & Wang, B.*. (2022). Long-term memory retrieval bypasses working memory. Neuroimage.

8. Wang, B.*, Knapen, T., & Olivers, C.N.L. (2022). Visual working memory adapts to the nature of anticipated interference. Journal of Cognitive Neuroscience.

7. Zhao, C.#, Li, X.*, Failing, M., & Wang, B.*. (2021). Automatically binding relevant and irrelevant features in visual working memory. Quarterly Journal of Experimental Psychology.

6. Li, X., Xiong, Z.#, Theeuwes, J., & Wang, B.*. (2020). Visual memory benefits from prolonged encoding time regardless of stimulus type. Journal of Experimental Psychology: Learning, Memory, and Cognition.

5. Wang, B.*, Theeuwes, J., & Olivers, C.N.L. (2019). Momentary, offset-triggered dual-task interference in visual working memory. Journal of Cognition.

4. Wang, B.*, Theeuwes, J., & Olivers, C.N.L. (2018). When shorter delays lead to worse memories: Task disruption makes visual working memory temporarily vulnerable to test interference. Journal of Experimental Psychology: Learning, Memory, and Cognition.

3. Wang, B.*, Yan, C., Wang, Z., Olivers, C.N.L., &Theeuwes, J. (2017). Adverse orienting effects on visual working memory encoding and maintenance. Psychonomic Bulletin and Review.

2. Wang, B., Cao, X., Theeuwes, J., Olivers, C.N.L., & Wang, Z.* (2017). Separate capacities for storing different features in visual working memory. Journal of Experimental Psychology: Learning, Memory, and Cognition.

1. Wang, B., Cao, X., Theeuwes, J., Olivers, C.N.L., & Wang, Z.* (2016). Location-based effects underlie feature conjunction benefits in visual working memory. Journal of Vision.